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suits also reflect the relative thermodynamic affinities 
(i.e., /3 subunits prefer carbon monoxide to oxygen as 
Iigands by a larger margin than do a subunits), we 
should expect carbon monoxide to be replaced by 
oxygen more readily from a than from /3 subunits. Ac­
cordingly, if Gibson's kinetic results do reflect the 
differential thermodynamic affinities for oxygen vs. 
carbon monoxide of a and /3 subunits, we tentatively 
conclude that the resonance at lower field (which is the 
one more readily removed by oxygen) represents 13CO 
bound to a subunits of rabbit hemoglobin. 

In summary, this work indicates that significant 
differences exist in the nature of the environment ex­
perienced by carbon monoxide when bound to a or /3 
subunits of a variety of hemoglobins. These differences 
do not appear to be significantly affected over the range 
pH 6.5-7.5 and, at least in the case of rabbit H b C O , are 
not affected by 2,3-diphosphoglycerate. Moreover, 
the ease of displacement of CO by O2 differs markedly 
for CO bound to the a or /3 subunits of rabbit hemo­
globin. 
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reketonization of a large fraction of the McLafferty 
product ions, for the keto and enol forms remain dis­
tinguishable by their ion-molecule chemistry.4 We 
now report on a McLaflerty rearrangement whose prod­
uct, monitored by its ion-molecule reactivity, is found 
to change structure as the time scale of the icr experi­
ment is increased. Standard* reactions for distin­
guishing keto and enol structures of ions were used to 
follow this transformation. It is, to our knowledge, 
the first reported example of structural change followed 
by ion-molecule reactions. 

The mass and icr spectra of 2-propylcyclopentanone 
(I) contain an ion of m/e 84 (II) resulting from the loss 
of propylene in a McLafferty rearrangement (eq 2). 

(2) 

I Ha lib 

Under conventional conditions for operation (5 X 
1O-6 Torr for I, 5 X 1O-6 Torr for the other ketone, 
total calculated transit time5 ( rT) ca. 4 X 1O-4 sec t o 
ca. 1 X 1O-3 sec, ionizing voltage 12-30 V) the product 
behaves like the expected enol, as the following ob­
served reactions typical of enolic structure4 suggest 
(eq 3-5). Double resonance experiments confirm 

+OH 

II + CD,COCD, CD3CCD, (3) 

Reketonization of a McLafferty Product Ion Studied 
by Ion-Molecule Reactivity 

Sir: 

The nature of the McLafferty product of a ketone 
molecular ion has been inferred to be of enolic structure 
at its time of formation.1 Recently it has been deter­
mined that for at least some aliphatic ketones the meta-
stable McLafferty product decomposing by loss of methyl 
scrambles in such a way as to suggest reketonization of 
the enolic form (eq I).2 In the case of an aryl alkyl 

•+OH o-4" 

II + (4) 

CHo—CCHQ CH3CCH3 

+ CH3CO' (1) 

ketone, the ion kinetic energy spectrum indicates that 
the metastable McLafferty product which loses methyl 
is not reketonized.3 A distinction may therefore be 
made between the behavior of purely aliphatic ketones 
and that of aryl alkyl ketones during loss of methyl 
from the metastable McLafferty product.2 0 

Previous studies of aliphatic ketones by ion cyclotron 
resonance (icr), however, have not led to observation of 
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II + CH3CH2COCH2CH3 —» CH3CH2CCH2CH3 (5) 

these assignments. 
When the residence time of the ions is increased by 

adjustment5 of the drift voltages ( rT ca. 5 X 1O -3 sec to 
ca. 1.6 X 10 _ 1 sec) and all other conditions are main­
tained the same, eq 3-5 can no longer be detected in 
the analyzer. In their place, new reactions appear. 

.COCD3 
+ 0 / 

II + CD3COCD3 (6) 

^ / 
COCH2CH3 

II + CH3CH2COCH2CH3 

II + C H 1 C H 2 C O C H 2 C H 2 C H 3 

. / 
COCH2CH3 

(7) 

(8) 

These are analogous to the reactions shown to be indic­
ative of the keto form,4 and in fact are also observed 
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with the molecular ion of cyclopentanone, while eq 
3-5 are not. We conclude that the average lifetime of 
the enolic product ion Ha is on the order of 1-5 X 10 - 3 

sec, and that it rearranges to a form characterized by the 
same chemistry as the molecular ion of cyclopentanone, 
i.e., reketonizes. 

The m/e 84 ion in the spectrum of 2-ethyl-5-propyl-
cyclopentanone (III), which arises from two consecutive 
McLafferty rearrangements (eq 9), behaves like an enol 

II (9) 

at short lifetimes as expected from earlier studies of con­
secutive rearrangements,4 but at TT ca. 10_1 sec, this ion 
also behaves like a keto form, undergoing, for example, 
eq7. 

Straight-chain aliphatic ketones produce McLafferty 
products which do not reketonize on such a scale that 
they can be detected by icr. For example, the acetone 
enol ion formed from 2-hexanone still undergoes reac­
tions typical of the enolic form, e.g., protonation of 
acetone-^e, even for TT on the order of 10_1 sec with 
ionizing voltages in the range of 13 and 20 V. The life­
time of the acetone enol ion is thus in excess of 10_1 sec 
when the total population of McLafferty products is 
considered, even though it may be2 on the order of 
10_5-10~6 sec for the metastable fraction losing methyl. 

In the presence of a collision gas (air) at 10-5 Torr, 
the reaction product of I retains its enolic structure even 
at residence times on the order of 10~2-10-1 sec. The 
presence of the collision gas may alter the residence 
time of the ion, and we are conducting experiments to 
distinguish between this and chemically more inter­
esting explanations relating to collisional stabilization 
of the enol form. 

The difference in reactivity between I and 2-hexanone 
suggests that the reketonization process is a function of 
ion structure even within nonaromatic ketones. We 
are beginning to examine other systems in order to de­
termine whether information about the preferred geom­
etry of the activated complex for reketonization may 
be gathered in this way. 
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Silver(I)-Assisted Methoxyl Group Ionization. Some 
Mechanistic and Synthetic Considerations 
Derived from the Behavior of 
encfo-2-Methoxytricydo[4.1.0.03'7]heptanesl 

Sir: 

Although Ag+ is now recognized to be capable of 
catalyzing spectacular bond rearrangements of bi-
cyclo[1.1.0]butane derivatives under exceedingly mild 
conditions,2 bicyclo[2.1.0]pentane is characterized by 
inertness toward this noble metal ion.34 Consistent 
with this reactivity order are our more recent findings 
that lSa'b and 25c are likewise unreactive toward cat­
alytic amounts of silver perchlorate in benzene.6 

As regards ether 5a, however, quantitative rapid isom-
erization exclusively to arcZz'-7-methoxynorbornene 
(6a) occurs under these conditions. We have now 
devised a general synthesis of enrfo-2-methoxytricyclo-
[4.1.03'7]heptanes (5) which permits: (a) conclusive 
demonstration of the fact that this rearrangement and 
the general 5 -*• 6 isomerization proceed by initial 
ionization of the methoxyl substituent and not by any 
Ag+-strained bond interaction; and (b) realization of 
facile synthetic entry to a variety of formerly elusive 
anti-7-substituted norbornenes. 

The brief synthetic scheme is founded upon stereo­
selective dibromocarbene addition7 to readily available 
3-methoxycyclohexenes (3) and subsequent stereo­
selective carbene-hydrogen insertion (4 -»• 5).8~10 The 
very characteristic nmr features of 5a, particularly the 
low-field quartet (/il2 = 3.5 and /2,3 = 7.0 Hz),11 are 
also readily apparent in the spectra of 5c and 5d. In­
dependent confirmation of structure 5c was derived 
from catalytic hydrogenation (Pd/C, ethanol, 1 atm) to 
e«cfo-l-methyl-3-methoxynorbornane (100%). As a 
result of their inherent structural features, this low-field 
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